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ABSTRACT
SRC Computers, Inc. has integrated adaptive computing into
its SRC-6 high-end server, incorporating reconfigurable
processors as peers to the microprocessors. Performance
improvements resulting from reconfigurable computing can
provide orders of magnitude speedups for a wide variety of
algorithms. Reconfigurable logic in Field Programmable Gate
Arrays (FPGAs) has shown great advantage to date in special
purpose applications and specialty hardware. SRC Computers
is working to bring this technology into the general purpose
HPC world via an advanced system interconnect and enhanced
compiler technology.
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1. INTRODUCTION
The SRC-6 system is a unique architecture capable of
supporting a combination of up to 512 Intel microprocessors
and 256 Multi-Adaptive Processors (MAP ) on a common
shared memory. A patented SRC crossbar switch design
supports the connection of these processors with up to 256
memory ports with each port containing 16 banks of SDRAM
(see Figure 1). The architectural design of the memory sub-
system provides flat access latency from any microprocessor or
reconfigurable processor in the SRC-6 system. This
combination will offer in excess of 3 TFlops of theoretical
peak [256 Pentium 4 processors and 128 MAPs on 32b
floating-point data]. SRC Computers is pushing forward to
harness this into sustained performance.

This paper explains how SRC Computers, Inc. has made
advances in the reconfigurable computing field by
incorporating FPGA technology at many levels in the SRC-6
system architecture.

Also described is SRC’s patented FPGA-based MAP that user
applications can utilize to deliver algorithm-specific
computational acceleration.

2. RECONFIGURABLE COMPUTING
DEFINED

In simplest terms, reconfigurable computing, based on FPGA
technology, could be defined as the capability of
reprogramming hardware to execute logic that is designed and
optimized for a specific user’s algorithms. Associated
compiling technology can provide a transparent method of
integrating the computational capability of FPGA technology
and microprocessors into a single application executable code.
The use of such integrated compiling technologies enables
reconfigurable architectures to extend beyond the FPGAs and
the “glueware” that attaches them to the host computer.

Automatic compilation of applications onto reconfigurable
architectures generates the logic for both the specific hardware
configuration and also the execution management of the FPGA
resources. The compilation environment must also be
extensible to a wide range of user applications on a single
system.

SRC Computers has taken into account all of these factors in
developing its unique reconfigurable computing capability for
the SRC-6 system.
e
Figure 1. Overview of SRC-6 System Architectur



3. MULTI-ADAPTIVE PROCESSOR
(MAP)

The heart of the SRC-6 system is its Multi-Adaptive
Processing feature provided by MAP units (see Figure 2).
These units utilize hardware-implemented functions, which can
greatly accelerate application algorithms over compiler
implemented instruction sets for microprocessors.

Major architectural characteristics of MAP include:

• Each MAP executes independently of the general-purpose
processors, including loading and storing needed data,
after being provided with a list of commands to execute.

• The control of the MAP is done by the application via a
Command List (COMLIST). The COMLIST contains a
list of controlling instructions for the Control Chip.
Examples of functions performed by these instructions are
Direct Memory Access (DMA) reads and writes and the
execution synchronization with the User Array.

• MAP units have access to Common Memory (CM).

• Common Memory addresses specified by commands or
generated by user applications are virtual addresses.
Addresses are translated, virtual to physical, by
Translation Look-aside Buffer (TLB) entries with the
DMA logic of each MAP.

• The User Array portion of a MAP unit is configured for
algorithmic requirements. This logic can read and write
on-board memory through multiple ports and can interact
with the control logic and DMA Engine.

• By means of chain ports, MAP units can communicate
between themselves without using any memory
bandwidth. Thus a particular MAP can send partial
results to another unit, or similarly, can receive such
partial results from another MAP.

• Full system interrupt and semaphore capability is
available between MAP units or the microprocessors.

Multi-processor applications can easily utilize the MAP by
identifying the relevant portions of the parallel computational
algorithms. The application can utilize N microprocessors and
M MAPs.

4. RECONFIGURATION LOGIC
PERFORMANCE POTENTIAL

The attraction of using FPGAs in SRC’s MAP is the ability to
generate algorithm specific logic, which has the potential of
orders of magnitude speedups for computationally intensive
algorithms. There have been many demonstrations showing
this magnitude of speedup in algorithms for genetic
sequencing, encryption/de-encryption, string searches and
integer forms of image and signal processing.

The performance improvement of these algorithms can come
from any or all of the following:

• Memory bandwidth improvements
- Six ports to memory

• Data flow parallelism
- Bit-sized data allows for multiple parallel processing

streams per 64 bits of data read from memory or
algorithms that may need multiple 32 or 64-bit input
values

• Computational block level re-scheduling
- Re-schedule independent computations to be concurrent

in time

• Instruction Set Architecture (ISA) effectiveness
- Create operations that are “right-sized” in bits relative to

the type of data, i.e. 6-bit or 256-bit integer operations

The following examples show potential performance
improvement contributors of an FPGA over that of a
microprocessor.
Figure 2. MAP Block Diagram



This example shows a performance comparison between an FPGA and a 900-MHz microprocessor.

Perform an integer add operation on each 4 bits of a data stream. The MAP reads in 64 bits of data from each memory bank.
The algorithm will use 3 memory banks to read data from the input stream and the logic will create 16 parallel computation
streams.

Feature Speedup over
Microprocessor

Derivation

Clock rate 100/900 or 1/9 100 for the FPGA and 900 for the microprocessor

Memory bandwidth 3 3 memory banks to read data from input stream

Data flow parallelism 16 16 parallel computation streams

Block level re-scheduling 1 None

ISA effectiveness 10 Number of instructions on the microprocessor required to perform
the equivalent integer operation on the 4-bit data value

Total 53.3 1/9 *3 * 16* 1 * 10 = 53.3

Algorithm Pseudo Code Segment of Logic Flow

Loop over 4-bit values in 32-bit data value
(isrc) and add a 4-bit value to input
value. Store resulting 4-bit value (ires)

     len = 4    //4-bit value

     ipos = 29  //start at position 29

    Do 100 j = 1, 16

      ibgn = (j-1)* 4 + 1

      mvbits (isrc,ibgn,len,itemp,ipos)

      ires  = idest + t_b4(j)

           //4-bit value stored in ires

      mvbits (ires,ipos,len,idest,ibgn)

100 Continue

J = J + 1

J = 0

Data
I I+1

Address
Generator

Mem Bank1

I4_Add

t_b*4 (0:3)
(4:7)

I4_Add

t_b*4(60:63)
(56:59)

. . . .

J < End

Yes

Data
I I+1

(0:3)
(4:7)

(60:63)
(56:59)

Data
I I+1

(0:3)
(4:7)

(60:63)
(56:59)

Address
Generator

Mem Bank2

Address
Generator

Mem Bank3

Example 1:



Operation FPGA DEC Alpha EV6
Read input data values 2 values every clock 1 value every clock

Operations every clock 128 Multiply-Adds 1 Mult and 1 Add

Feature Speedup over
Alpha EV6

Derivation

Clock rate 100/800 or 1/8 100 for FPGA and 800 for Alpha EV6
Memory bandwidth 2 2 values read every clock
Data flow parallelism 1 N/A
Block level re-scheduling 64 Convolution filter is 64 points
ISA effectiveness 3/2 Number of instructions on the FPGA relative to the microprocessor per

clock
Total Speedup 24 1/8 * 2 * 1 * 64 * 3/2 = 24

A segment of the filter code is shown here:

Filter Pseudo Code Logic Flow
C Loop over output points

   Do 100 n = 1, nout

     sum = 0.

C Loop over filter coefficients

     Do 200 j = 1, ncoef

       sum = data_in(n+j-1) * filter(j)

100 continue

     data_out(n) = sum

100 continue

Loop over FIlter Coeficients

j = j + 2

Data
I I+1

FpMult

Rj Rj+1

FpMult

AG 1

FpAdd

sum

FpAdd

j < ncoef

sum = 0 j = 0

Yes

The following example shows a comparison between an FPGA and the Alpha EV6.

Perform a 32-bit floating-point convolution filter on a set of vector data. The convolution filter will be 64 points. The filter will be
stored in a set of registers in the FPGA chip. Two values of the input data will be read every clock. The output computation rate
will generate two output values every clock.

Example 2:



Operation FPGA Pentium 4
Read input data values 4 values every clock 1 value every clock

Operations every clock 512 Multiply-Adds 1 Mult or 1 Add

Feature Speedup over
Pentium 4

Derivation

Clock rate 100/1700 or 1/17 100 for the FPGA and 1700 for the Pentium 4

Memory bandwidth 4 4 values read every clock

Data flow parallelism 1 N/A

Block level re-scheduling 256 Convolution filter is 256 points

ISA effectiveness 2 Number of instructions on the FPGA relative to the
microprocessor per clock

Total Speedup 120.5 1/17 * 4 * 1 * 256 * 2 = 120.5

This example also shows a comparison between an FPGA and the Pentium 4, using integer data.

Integer arithmetic function units take much less space within an FPGA chip than the floating-point unit. Let’s change the
previous example to 32-bit integer data. The convolution filter will be 256 points. The filter will be stored in a set of registers in
the FPGA chip. The input/output data will each be striped across two memory banks. Four values of the input data will be read
every clock. The output computation rate will generate two output values every clock.

Example 3:

These examples have shown application speeds for several
types of integer and floating-point types of problems. The
benefits of using FPGAs are obviously for algorithms that
have high performance speedups and high percentages of
computation time.

Ex. 1 Ex. 2 Ex. 3

MAP Algorithm
Speedup

53x 24x 120x

Percent of time spent
in algorithm

Application
Speedup

80 4.7 4.3 4.8

90 8.5 7.3 9.30

95 14.7 11.2 17.3

99 34.9 19.5 54.8

4.1 Amdahl’s Law
A generally used measure of performance or speedup of an
algorithm for various architectures is Amdahl’s Law. It has been
used for vector and parallel systems to show the benefit of
optimizing portions of code. Amdahl’s Law points out that given
the percent of time spent in a portion of code the overall
application may get only marginal overall speedup even though
the algorithm was made to execute much faster. We can apply
the same principal to algorithms moved into MAP. Let’s
examine the previous examples and look at the application
speedup up given various percentages of time spent in the
algorithm.



5. PROGRAMMING FLOW VS. DATA
FLOW

Algorithms that will be moved into the MAP should be thought
of as data flow problems from the hardware logic perspective.
The following example will look at the CAXPY algorithm
[def: A*X(j) + Y(j) = Z(j)]. The traditional way for a
programmer to think of CAXPY is as a loop over the number
of elements in arrays X and Y. However, in hardware, it is

thought of as a data flow through logic. The logic will read
values for X and Y every clock and send the values through the
logic definition to the set of FpMults and FpAdds and create a
value for Z every clock.

The compiler, as part of its analysis of code segments, creates a
data flow graph and performs dependency analysis. This
information can then be used to create an algorithm data flow
that will be put into hardware logic for the FPGAs.

Yes

/ 32

FpMult

Xr(j)

FpAdd

X(j)

MEM 1
Algorithm Programming Flow Algorithm Data Flow

J = 0 address0, stride, count address0, stride, count
J < N

Z

J = J + 1

END

/ 64 / 64

/ 32 / 32 / 32

/ 64

/ 32 / 32

AG 3

X AG 1 AG 2 Y

FpMultFpMultFpMult

Xi(j) Ar Ai

(neg) FpAdd

FpAdd FpAdd

Yr(j) Yi(j)

Zr(j) Zi(j)

Y(j) Z(j)

MEM 2 MEM 3 MEM 4 MEM 5 MEM 6

M_Bank
3

/ 64 / 64

/ 32 / 32 / 32 / 32

/ 64

/ 32 / 32

M_Bank
1

AG 1 M_Bank
2

FpMultFpMultFpMultFpMult

Xr(j) Xi(j) Ar Ai

FpAdd(neg) FpAdd

FpAdd FpAdd

Yr(j) Yi(j)

Zr(j) Zi(j)

end_of_data_flag end_of_data_flag

AG 2

AG 3

address0, stride, count



The arithmetic function units instantiated in the FPGAs have a
pipeline design. This means that a new data value can be input
into the function unit every clock. There is a latency
associated with each function unit before a final result is
produced from the input data value. After the first data value
comes out, subsequent output values will come out every
clock. Assume that the latency for an FpMult and FpAdd are
both 10 clocks.

Figure 3 shows how data flows through a pipelined function
unit. In addition, the figure shows a function unit that has
multiple phases. Floating-point units often have pre- and post-
processing for format conversion, i.e., conversion from IEEE
Floating-Point representation into an internal representation.

Going back to the CAXPY example, Table 1 shows how many
clocks it will take for data samples to pass through stages of
the hardware logic.

The processing time of hardware logic is similar to that of very
long vectors on vector processor systems. The time in clocks
to process a set of data, of length Nelem, through CAXPY
would be:

Time (clocks) = Nelems + Latency
= Nelems + 35 clocks
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Figure 3. Data Flow through Pipelined Function Unit



6. DESIGNING ALGORITHMS FOR MAP
One of the major issues that have hindered the use of FPGAs to
date for general-purpose scientific algorithms has been the lack
of an ability to use floating-point arithmetic. This impediment
has come from two related factors.

The first has been the actual size, gate count, of FPGAs. Until
recently, the size of FPGAs has been under 1M gates. The
advent of multi-million gate FPGAs has dramatically changed
the possibility of the type of logic than can be loaded into a
single FPGA chip.

The second limitation has been the size of floating-point (32-
or 64-bit) functional units for FPGAs. The number of gates
required to define IEEE-754 compliant function units is much
greater than those for integer function units.

Table 2 shows the approximate number of function units that
can be defined in an SRC MAP III.

Another consideration is the amount of the algorithm logic that
will fit in a single FPGA chip. The MAP environment has the
capability to extend the algorithm across multiple FPGA chips
and multiple MAPs. The MAP User Array interconnect
provides the ability to transfer 24 bytes per clock. A transfer
can be configured dependent upon the data type being
transferred. A transfer could send three 8-byte elements, six 4-
byte elements, twenty-four 1-byte elements, etc. The transfer
between MAPs via the Chain Ports can send 12 bytes per
clock. This MAP interconnect does not use any switch
bandwidth.

ClockData Flow Logic

1 2 … 13 … 24 … 35 36

M_Bank3

FpMultFpMult

FpAdd(neg) FpAdd

FpAdd FpAdd

Address
Generator 3

address0, stride, count

M_Bank1 Address
Generator 1

address0, stride, count

end_of_data_flag

[32:64][0:31]

[32:64][0:31]

FpMultFpMult

M_Bank2

end_of_data_flag

Address
Generator 2

address0, stride, count

[32:64][0:31] D 1 D 2

D 1

D 3

D 2

D 1

D 4

D 3

D 2

D 1

D 5

D 4

D 3

D 2

D 1

D 6

D 5

D 4

D 3

D 2

Table 1. Data Sample Processing Latency

Function Unit Type Function Count
Integer, 32b Multiply 140

Add 3000

64b Multiply 36

Add 1570

Floating Point, 32b Multiply 48

Add 108

64b Multiply 24

Add 48

Table 2. Function Count for MAP III



7. SRC COMPILER TECHNOLOGY AND
TOOLS

SRC is extending a well-known vendor’s FORTRAN and C
compilers to target compilation of computationally intensive
portions of applications for FPGAs. Part of the compilation
process is the generation of a data flow graph (DFG) and the
dependency analysis of the application code. The DFG and
dependency analysis are used to define the layout of
programmable logic in the FPGAs and data layout in on-board
memory. Two execution-time components will be generated.
The first is the hardware logic defined from the data and
control flow analysis. The second is the definition of a
“Command List”, or COMLIST, for the execution control of
the User Array environment and issuance of direct memory
access (DMA) instructions.

Current hardware design can be accomplished through the use
of Hardware Definition Languages (HDL). An HDL is a high
level language similar in concept to a software high level
language such as C. The process of converting the HDL into a
hardware design consisting of wires and transistors etc. is
called “synthesis”. Synthesis is somewhat analogous to normal
software compilation.

There are a great number of tools and products available that
work with various HDL. The compilation strategy for the MAP
is to leverage the ready availability of synthesis tools etc.
available for HDL (see Figure 4). The basic premise is that
compilation for the MAP shall consist of translating the
software language of the user,( i.e. C or FORTRAN) into an
HDL representation. This HDL representation can readily be
processed by existing hardware design toolsets into the
bitstream used to configure the User Logic (U_Logic).

The chosen HDL target language is VERILOG. The
VERILOG language allows representation of hardware design
at various levels of abstraction. At the lowest level, it is
possible to write VERILOG code that represents individual
gates and wires. At the opposite extreme, one can write so-
called “behavioral” code, which has a high degree of
abstraction. In fact, it is possible to write behavioral code that
cannot be synthesized into hardware. Such code is useful for
the purposes of simulation.

It is not the intent of the compiling strategy that the synthesis
of VERILOG shall include the synthesis of floating-point
operations etc. One of the primary constraints for the compiler
is compile time. The user of the compiler will have
expectations that the compilation should be done quickly. This
presents a significant challenge in the “place and route”
process. Since the compiler will be using existing commercial
tools, the compiling system must function in such a way as to
make the job of these tools as easy as possible.

To facilitate the synthesis process, the compiler-generated
VERILOG code shall consist solely of instantiation and
hookup of an existing set of pre-defined VERILOG modules.
A VERILOG module is similar in concept to a software
subprogram, or subroutine. Importantly, experienced hardware
designers at a very low design level can create these pre-
defined modules, in a pre-placed manner. This makes them
efficient in terms of speed and resource usage, and, since they
are “relationally placed”, the place and route portion of the
final synthesis can proceed faster.

The number and type of pre-defined modules is relatively
small. Just as normal software compilation builds the behavior
of the user’s program from a small set of basic op-codes, so too
can the U_Logic configuration be built up from a finite set of
pre-defined modules, such as integer/floating-point add,
multiply, divide, etc..

The development of domain-specific modules (e.g. Convolve,
FFT) that can be used as building blocks in the design of
FPGA-based programs is a necessity. These modules provide
a bridge between the algorithm developer and the hardware
logic “designer”. The module will have a counterpart in an
FPGA macro library. These macros will be incorporated into
the DFG and used in the hardware definition language (HDL).
Examples of potential libraries for the generation of macros are
signal and image processing and linear algebra routines. In
addition, application or user-specific modules can be defined
and added to an FPGA macro library set.

The ability of the user to optionally manipulate the compiler-
generated logic is extremely important. This manipulation step
must be available for those customers that want to get the last
“drop” of algorithmic performance out of the hardware. The
DFG generated by the high-level language (HLL) compiler
s
Figure 4 . Diagram of the SRC Compiler Proces



will be an optional output. This graph will be modifiable in a
DFG Editor to provide potentially higher levels of
optimization.

The on-board memory of the MAP will be used like a
software-controlled cache for a more conventional
microprocessor. An added bonus is that this “cache” can have
different user-defined caching strategies. The data access and
compute strategies will maximize temporal locality with
respect to the use of resident, on-board data and will overlap
computation on this data with streaming in the “working set”
of data for the next phase of the computation. We will generate
both the Common Memory DMA instructions and the on-board
data layout from the data-flow/dependence analysis.

Furthermore, the provision for rapid prototyping of the
algorithm in MAP is a desirable tool for the optimization
process. We are investigating potential tools for DFG
translation for input to commercial packages; e.g.,
MATLAB/Simulink could provide easy access to prototyping
and optimizations that a wide variety of people use today.

The available resources of the U_logic FPGA chips in the
MAP are a finite resource. It will be a simple matter to compile
user code into a final U_Logic configuration that exceeds the
physical resources available in the chips. There will obviously
have to be some feedback from various portions of the
synthesis tools to the compilation system. The compilation
system will also have to apply various heuristics in regards to
precisely what portions of the user code should be targeted for
the MAP in the first place, and what sort of transformations
might be applied to the user code to allow for optimal
performance. The feedback from the synthesis tools and the
compilation heuristics can only be determined from direct
experience. Initial versions of the compiler will necessarily
omit this functionality. Adding this functionality based on the
learned experience represents a significant portion of the
overall effort required to create a mature compiler.

8. ALGORITHM STUDIES
The benefit of using reconfigurable computing has been shown
in many domain areas[1][2][5]. Several algorithms will be
reviewed to show the performance improvements over RISC
and microprocessor-based systems. The definition of the
hardware logic for these algorithms started with DFGs from

our HLL compiler. The MAP compiler generates an
equivalent DFG that it uses for the generation of HDL.
Algorithm performance on MAP is from hardware simulation
of the logic. In addition, optimization techniques and
experiences will be discussed relative to compiler generated
HDL.

The SRC-developed compiler is in a prototype stage of HDL
generation. The compiler has demonstrated the ability to
import pre-defined function unit modules and generate logic
with correct results. Development on the compiler is
proceeding in a directed, methodical manner. It does not yet
fully compile the discussed cases. It can be expected that
compilation of the following cases will be achieved by the time
of the presentation of this paper at the SC01 conference.

8.1 Case 1: Convolution – Zero Phase Filter
This algorithm has been discussed briefly earlier in the paper.
Let’s examine the 32b floating-point convolution problem with
a 64-point zero phase filter. The critical challenge for the
compiler is to know how to take a simple convolution code and
define a method for the scheduling of operations to take
advantage of the opportunity to use a large number of
multiply/adds relative to traditional processor implementation.
The MAP can read up to 384b of data from on-board memory
every clock.

The existing compiler’s HDL implementation would utilize
only a single input data element every clock. The performance
of this level of optimization would be 2 Flops/clock. The MAP
logic can consume the two 32b input data values every clock.
If the logic can process only one element every clock, then the
logic has to stall for a clock in order to consume the second
input data value. Therefore, the processing rate can only create
an output data element every other clock.

In order to optimize performance relative to the reading of the
input data, hardware logic was developed that loaded the data
appropriately into two sets of shift registers for the even and
odd data elements. Two processing streams were defined to
process the even and odd input data elements.

Figure 5 shows how the input data is loaded into the shift
registers for the even/odd input data values. The shift registers
are loaded up from the read of the first thirty-two 64b data
values from memory.
Shift Register for Odds Shift Register for Evens

0246856586062 . . .641 3 5 7 9 57 59 61 63. . .

input data

o e

Fill Direction Fill Direction

Figure 5. Data Streams Going into Shift Registers



After the shift registers are full, the multiplication of the data
values with the filter coefficients can start. The process is
pipelined so that the next input values will go into the shift
registers. The generation of the output points is shown in
Figure 6 as the contribution of the two shift registers.

This strategy is similar to loop unrolling that the compiler can
often generate. We are in the process of developing heuristics

for the compiler so that it can automatically generate this level
of optimization strategy.

The computational performance on MAP for this convolution
algorithm will be 256 flops/clock. This compares to 2
flops/clock on the Alpha EV6.

Figure 6. Processing Streams for Data
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8.2 Case 2: Routine SCORE from MAXSEGS
MAXSEGS is a Smith-Waterman implementation of a genetic
sequence alignment algorithm. The focal point of this analysis
has been on the routine, SCORE. The routine, developed by
Alex Ropelewski[4] of Pittsburgh Supercomputing Center,, is a
fully vectorized version of the Waterman-Eggert dynamic
program algorithm. The computationally intensive portion of
SCORE is shown in the following code segment.

The goal for any algorithm in the MAP is to create a data flow
that will maximize the use of input data and computational
results within a single pass of the logic flow. The challenge
with this code is to create a data flow that would maximize the
use of 32-bit data coming from the input arrays EXTGVI,
EXTGVJ and SIMILS. As explained in Ropelewski et al., the
key lies in the diagonal access patterns of the algorithm.

Arrays are accessed across diagonals of the matrix in this
fashion:

and values are computed in the following order:
(1,1)
then (1,2), (2,1)
then (1,3), (2,2), (3,1)
and continuing on until the value in (4,4) is computed.

Values of start and end shown in the code segment are the
starting and ending diagonal values − (1,1) and (4,4),
respectively.

The nested loops are unrolled by a factor of two to utilize the
two 32-bit values read from on-board memory in the MAP. A
macro can be made for the inner loop computation of
EXTGVI, EXTGVJ and SIMILS. The logic flow for the
computational macro is shown in Figure 7.

The hardware implementation of SCORE is pipelined (see
Figure 8). The execution of the SIMILS macro can take a new
value every clock and generate the values for SIMILS,
EXTGVI and EXTGVJ every clock. The latency for a value in
the macro is three clocks.

The layout of the data in on-board memory can dramatically
affect the performance of the logic in MAP. The algorithm
logic needs to read and write data to SIMILS with each
computation of the inner loop. The first optimization approach
was to replicate the data in SIMILS into four memory banks.
This allows for reads and writes of four values with each read
or write operation every clock. The approach is very effective
in getting the necessary values for the computation. Because
the overall algorithm logic is pipelined, there is a conflict of
reading and writing SIMILS values to the memory banks at the
same clock. In order to sustain the maximum processing rate,
we had to alter the logic so that the read and write operations
would occur at alternating clock cycles. The logic will process
four updated values of SIMILS every two clocks.

A second approach for memory allocation for SIMILS was to
use the Block RAM available within the FPGAs of MAP.
There is 2.7 Mb available in 18b units. The logic used the
feature that the RAM can be defined as dual-ported. This
feature is exactly what we needed for the reading and writing
of the SIMILS values. The computation can now generate
four updated values of SIMILS every clock.

The performance of the original code on a microprocessor
takes 55 clocks to process a single updated value for SIMILS.
The MAP has a performance improvement of 13x over a 1700-
MHz Pentium 4 microprocessor.

Modified version of Ropelewski
schematic representation[4]

do 200 k=1,ls1+ls2-1,1
  i=min(k,ls2)
  j=max(1,(k+1-ls2))

  do 210 index = start(k),end(k),ls2
     left = index-(ls2+1)
     diag = (index-(ls2+1))-1
     up   = index-1

     extgvi(i)= max(0,extgvi(i)+gap,
                    simils(left)+gap+newgap)
     extgvj(j)= max(0,extgvj(j)+gap,
                    simils(up)+gap+newgap)

     simils(index)=max(simils(diag)+
                       wt(s1(j),s2(i)),
                       extgvi(i),extgvj(j),0)
     i=i-1
     j=j+1
210  continue
200 continue
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8.3 Case 3: Routine P7Viterbi from application HMMER
HMMER is a popular application for performing protein
sequence analysis. The application profiles hidden Markov
models (HMMs). There are several companies that have
developed specialty ASICs that perform key computational
algorithms in HMMER. We profiled several executions of
HMMER (hmmcalibrate) and they pointed out that over 99.5%
of the time was spent in the routine P7Viterbi. This case will
focus on the optimization steps taken to move P7Viterbi into
the MAP.

Figure 9 shows the sequence of tests made to determine the
score for the alignment matching process. [3] The letters in the
diagram correspond to the various “states” in the algorithm
definition that follows shown in Figure 10.
M1

I1

M2 M3 M4

D2 D2

B

I2

NS E

I3

C T

N

Figure 9. Diagram of the Algorithm State Comparisons



Core of Algorithm Code Generalized Flow Graph

for (i = 1; i <= L; i++) {
mmx[i][0] = imx[i][0] = dmx[i][0] = -INFTY;

for (k = 1; k <= M; k++) {
/* match state */

mmx[i][k] = -INFTY;
if ((sc = mmx[i-1][k-1] + tsc[k-1][TMM]) > mmx[i][k]) mmx[i][k] = sc;
if ((sc = imx[i-1][k-1] + tsc[k-1][TIM]) > mmx[i][k]) mmx[i][k] = sc;
if ((sc = xmx[i-1][XMB] + bsc[k]) > mmx[i][k]) mmx[i][k] = sc;
if ((sc = dmx[i-1][k-1] + tsc[k-1][TDM]) > mmx[i][k]) mmx[i][k] = sc;
if (msc[idsq][k] != -INFTY) mmx[i][k] += msc[idsq][k];

else mmx[i][k] = -INFTY;

/* delete state */
dmx[i][k] = -INFTY;
if ((sc = mmx[i][k-1] + tsc[k-1][TMD]) > dmx[i][k]) dmx[i][k] = sc;
if ((sc = dmx[i][k-1] + tsc[k-1][TDD]) > dmx[i][k]) dmx[i][k] = sc;

/* insert state */
if (k < hmm->M) {

imx[i][k] = -INFTY;
if ((sc = mmx[i-1][k] + tsc[k][TMI]) > imx[i][k]) imx[i][k] = sc;
if ((sc = imx[i-1][k] + tsc[k][TII]) > imx[i][k]) imx[i][k] = sc;
if (isc[idsq][k] != -INFTY) imx[i][k] += isc[idsq][k];

else imx[i][k] = -INFTY;
}

}

/* N state */
xmx[i][XMN] = -INFTY;
if ((sc = xmx[i-1][XMN] + xsc[XTN][LOOP]) > -INFTY) xmx[i][XMN] = sc;

/* E state */
xmx[i][XME] = -INFTY;
for (k = 1; k <= hmm->M; k++)

if ((sc = mmx[i][k] + esc[k]) > xmx[i][XME]) xmx[i][XME] = sc;

/* J state */
xmx[i][XMJ] = -INFTY;
if ((sc = xmx[i-1][XMJ] + xsc[XTJ][LP]) > -INFTY) xmx[i][XMJ] = sc;
if ((sc = xmx[i][XME] + xsc[XTE][LP]) > xmx[i][XMJ]) xmx[i][XMJ] = sc;

/* B state */
xmx[i][XMB] = -INFTY;
if ((sc = xmx[i][XMN] + xsc[XTN][MV]) > -INFTY) xmx[i][XMB] = sc;
if ((sc = xmx[i][XMJ] + xsc[XTJ][MV]) > xmx[i][XMB] xmx[i][XMB] = sc;

/* C state */
xmx[i][XMC] = -INFTY;
if ((sc = xmx[i-1][XMC] + xsc[XTC][LP]) > -INFTY) xmx[i][XMC] = sc;
if ((sc = xmx[i][XME] + xsc[XTE][MV]) > xmx[i][XMC]) xmx[i][XMC] = sc;

}
/* T state */

sc = xmx[L][XMC] + xsc[XTC][MV];

}
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K < M
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Figure 10. HMMER Algorithm Definition



The DFG produced by our standard compiler was the starting
point for the logic definition. Unfortunately, this starting point
did not take advantage of the MAP’s ability to shift the logic
for the Insert and Delete States to be concurrent with the Match
State. Therefore, we manually performed this level of
optimization. These are optimizations that we see the compiler
eventually being able to do.

The data type for all variables in the algorithm is 32b integers.
The first approach to the definition of the hardware logic was
to take advantage of data parallelism through reading in two
32b values from on-board memory every clock for the
computational inputs xmx, imx, dmx, msc, bsc, isc, and tsc.
The algorithm uses previously computed points in vectors
mmx and imx. The inner loop will be unrolled by two. The

logic has the potential of easily using the two values read in per
clock. The dependency upon previous computed values meant
that we could not pipeline the algorithm. Therefore, the
performance of the algorithm is gated by the performance of
the logic for the inner loop. Upon further investigation into the
options for the logic, we determined that we could take the
cascaded sets of greater-than tests and put them into a single
MAX and MUX construct. This allows us to reduce the
latency through this portion logic by a factor of two.

Figure 11 shows the two sets of logic.

The Delete and Insert States also use a similar form of logic.
The performance of the algorithm on the MAP was 10 clocks
for each pass through the inner loop and 4 clocks through each
pass the logic at the end of the outer loop.
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Now that we have the basic logic definition of the algorithm,
we need to investigate the “memory” access of the mmx, dmx,
imx variables. A simple analysis shows that the backward

looking aspect of the algorithm can use values in the unrolled
inner loop and the unrolled outer loop. This pattern is shown
in Figure 12. Note that the I+1, I+2 Loops are shifted in time
in order to consume values computed previously.
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The memory access pattern analysis shows that additional
execution parallelism can be obtained through unrolling of the
outer loop. The memory access pattern is similar to the inner
loop problem. The algorithm uses previous computed vectors
in I-1. The implementation used a set of temporary values
stored in Registers for the values of xmx[I-1], dmx[I-1] and
imx[I-1]. Analysis of the problem showed that we need to
delay loop I+1 by at least 6 clocks. This would provide the
[I][K]th value required in the compute of the I+1 loop for the
Match, Delete and Insert States. In addition, the mmx, dmx
and imx values do not have to be stored in memory because the
values are completely consumed by the logic. By not needing
to write these values to memory the latency of the inner loop
decreases to 9 clocks and removes any need to consider
potential bank conflicts to on-board memory.

We have the ability to completely unroll the outer loop.
However, for large counts of L, outer loop count, we could
easily exhaust the logic building blocks, CLBs or Slices, in the
FPGA. The final definition of the logic and place and route of
the FPGA determined that we could unroll the outer loop by
twenty. We use a common guideline to not use more that 80%
of the available resources in order to get an efficient place-and-
routed algorithm.

The performance of the algorithm was compared with that of a
1700-MHz Pentium 4 microprocessor. The MAP functions
units and logic were operating at 100 MHz. A measurement of
the average amount of time spent in the inner loop was made as
the number of clocks to do the nested loops divided by the
product of the loop counts (L * M). The average was taken
over 5000 runs of the routine. The following table shows
three data cases and the type of algorithm speedups that were
achieved. Another feature of the MAP is that it has two
FPGAs available for computation. The algorithm was unrolled
across both FPGAs and the additional speedup is shown in
Table 3.

Given the percentage of time spent in the routine, 99.5%, the
application speedup achieved was over 50x. The price-
performance of the MAP exceeded that of the microprocessor
on this problem by a factor greater than 12.5x.

Avg. TimProblem Size
(L, M)

Micropr

355, 162 17

348, 251 18

344, 462 19
Table 3. Speedup of Algorithm with MAP

e spent in inner loop per
iteration (Clocks)

ocessor MAP

Parallelism

(#Loops, # FGPAs)

Algorithm

Speed-up

5 4.55 1 / 1 2.26

20/ 1 35

40/ 2 58

5 4.54 1 / 1 2.39

20 / 1 39

40 / 2 65

2 4.54 1 / 1 2.49

20 / 1 42

40 / 2 72



9. EXTENDING COMPILER
HEURISTICS FOR FPGAS

Memory access promises to be the most challenging area for
optimal expression of an algorithm on an FPGA. Fortunately
there is a rich history of processor and memory architectures
that can be gleaned for various approaches. In this regard, the
ability to reconfigure is the best aspect of the FPGA, since
completely different schemes can be used by the compiler in
different contexts. There is also a well-understood history of
compiler transformations that can be applied to user code in
order to take advantage of various hardware specifics. The key
to optimal compiler-generated performance for the FPGA
would seem to be a balanced set of applied heuristics at the
memory interface and code transformation levels, all the while
operating within the bounds of the FPGA resource limits. The
FPGA brings an interesting slant to compilation, as constraints
that are fixed in a traditional processor are now merely another
set of variables.

10. CONCLUSIONS
The potential of getting orders of magnitude speedups from
reconfigurable computing has been shown in a variety of
application domain areas at the component or single board
level. The question of applicability to a generalized set of
computationally intensive scientific algorithms is currently
being addressed by SRC Computers.

The requirement to get broad-based acceptance of
reconfigurable computing will be based on the ability to
demonstrate the following:

• Price/Performance improvement over existing
processors

• Ease of achieving this improvement

SRC recognizes that it is critical to have compiler technology
and tools available to programmers that will minimize the
effort to get the desired performance from MAP.

11. SUMMARY
This paper has shown that there are major steps taking place to
make the first level compiler optimizations for FPGA
technology and to provide adequate performance gains. There
will still be a place for handcrafted hardware logic for time
critical algorithms. However, the optimization capabilities of
the compiler will evolve just as it has for vector and cache-
based computing systems.

The promise of increased performance with MAP has been
established; it will only improve with new generations of
FPGA chips.
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